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ABSTRACT: The ansa-zirconocene complex rac-Me2Si(1-indenyl)2-
ZrCl2 ((SBI)ZrCl2) reacts with diisobutylaluminum hydride and trityl
tetrakis(perfluorophenyl)borate in hydrocarbon solutions to give the
cation [(SBI)Zr(μ-H)3(Al

iBu2)2]
þ, the identity of which is derived

from NMR data and supported by a crystallographic structure deter-
mination. Analogous reactions proceed with many other zirconocene dichloride complexes. [(SBI)Zr(μ-H)3(Al

iBu2)2]
þ reacts

reversibly with ClAliBu2 to give the dichloro-bridged cation [(SBI)Zr(μ-Cl)2Al
iBu2]

þ. Reaction with AlMe3 first leads to mixed-
alkyl species [(SBI)Zr(μ-H)3(AlMex

iBu2-x)2]
þ by exchange of alkyl groups between aluminum centers. At higher AlMe3/Zr ratios,

[(SBI)Zr(μ-Me)2AlMe2]
þ, a constituent of methylalumoxane-activated catalyst systems, is formed in an equilibrium, in which the

hydride cation [(SBI)Zr(μ-H)3(AlR2)2]
þ strongly predominates at comparable HAliBu2 and AlMe3 concentrations, thus impli-

cating the presence of this hydride cation in olefin polymerization catalyst systems.

’ INTRODUCTION

Alkylaluminum-complexed zirconocene hydride complexes
have been shown to be present in a variety of catalytic systems,
for example, for hydro- and carboalumination reactions of un-
saturated substrates, including their asymmetric variants.1 While
there is still some uncertainty concerning the compositions and
structures of the complexes occurring in these reaction systems,2

we have recently shown that two types of neutral complexes can
arise in such reaction systems containing diisobutylaluminum
hydride, HAliBu2,

3 depending on the type of zirconocene used.4

Trihydride complexes containing three {AliBu2} units connected
by two Cl-bridges are formed in the presence of HAliBu2 from
most unbridged zirconocene dichlorides (Scheme 1). Ring-bridged
ansa-zirconocene precursors, on the other hand, react with
HAliBu2 to yield in most cases chloro dihydride complexes
containing only one {AliBu2} unit (Scheme 2). This dichotomy
appears to be caused by steric interference due to the ecclipsed
ring-ligand conformation, which is enforced by a single-atom
interannular bridge.4

Apart from such neutral species, alkylaluminum-complexed
zirconocene hydrides might also give rise to cationic species,
particularly in zirconocene-based reaction systems containing
methylalumoxane (MAO) or other “cationization” reagents gen-
erally employed for olefin polymerization catalysis.5 Cationic
zirconocene hydride species, stabilized by complex formation
either with an anion,6 with a neutral Lewis base,7 or, in the context
of the work reported herein, with some neutral hydride species,6d,8

have been identified by NMR and, in many instances, also

Scheme 1

Scheme 2
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crystallographically characterized.6a,6b,7a-7f,8 The question thus
arises: which kinds of cationic zirconocene hydride species
might be present in “cationized”, alkylaluminum-containing poly-
merization catalyst systems? In such catalyst systems, alkylalu-
minium-complexed hydrides have occasionally been observed by
NMR,9 but their identity does not yet appear to be unequivocally
established. We have thus explored the nature of cationic species
produced in reaction systems containing a zirconocene dichloride
in the presence of an alkylaluminum hydride and a cationization
reagent. Here, we report the results of these experiments that
have focused mainly on the often-studied ansa-zirconocene com-
plex (SBI)ZrCl2. A cationic alkylaluminum-complexed zircon-
ocene hydride of this complex has recently been shown by some
of us to catalyze olefin polymerization and hydroalumination.10

’RESULTS AND DISCUSSION

1. The Reaction System (SBI)ZrCl2/HAl
iBu2/[Ph3C][B-

(C6F5)4]. In a typical experiment, a 4 mM benzene-d6 solution
of the neutral complex (SBI)Zr(Cl)(μ-H)2Al

iBu2 is obtained by
reaction of (SBI)ZrCl2 with 5 equiv of HAliBu2.

4 When the
neutral species is then treated with 1 equiv of trityl tetrakis-
(perfluorophenyl)borate, [Ph3C][B(C6F5)4], at room tempera-
ture, the reaction mixture immediately assumes a bluish-green
tint. 1H NMR of the solution reveals a single product character-
ized by a doublet at -2.25 ppm with 2JHH ≈ 8 Hz and an inte-
gration of 2H per zirconocene unit (Figure 1), which is indicative
of a ZrH2 group. A gCOSY reveals that this doublet is coupled to
a triplet at 0.30 ppm, which is partly obscured by Al-CH2 signals
(Figure 2). This triplet must then be due to a third Zr-bound
hydride ligand, such that this set of hydride signals is to be
assigned to a zirconocene complex with three Zr-bound hydride
ligands, one in central position and two in lateral positions. The
complete conversion of 1 equiv of the trityl salt to triphenyl
methane (δ 5.42 pm) implies the formation of a zirconocene
monocation. For a proper balancing of charges, this cation would

have to contain two {AliBu2
þ} units, presumably in contact with

the Zr-bound hydride ligands.
The {AliBu2

þ} units of the resulting cationic complex, [(SBI)-
Zr(μ-H)3(Al

iBu2)2]
þ, give rise to CH and CH3 signals centered

at 1.77 and 0.94 ppm, respectively, and to a CH2 signal with a
well-resolved diastereotopic splitting of 0.11 ppm, centered at
0.20 ppm. Integration of these signals, which are well separated
from those of the free {iBuAl} species present, clearly support the
presence of two {AliBu2

þ} moieties per zirconocene unit. For-
mation of ClAliBu2 can be deduced from a characteristic splitting
of the Al-H resonance into three separate resonances due to the
formation of mixed (XAliBu2)3 trimers, with X = H and Cl,11 and

Figure 1. 1H NMR spectrum of the cationic hydride [(SBI)Zr(μ-H)3(Al
iBu2)2]

þ in benzene-d6 solution, obtained by treating a 4 mM solution of
(SBI)ZrCl2 first with 5 equiv of HAliBu2 and then with 1 equiv of [Ph3C][B(C6F5)4] (25 �C, 500 MHz).

Figure 2. High-field region of gCOSY of the cation
[(SBI)Zr(μ-H)3(Al

iBu2)2]
þ (reaction conditions as in Figure 1).
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from the observation of isobutyl 1H resonances of free ClAliBu2
at-25 �C (Supporting Information). Conversion of (SBI)ZrCl2
to the hydride cation, [(SBI)Zr(μ-H)3(Al

iBu2)2]
þ, can thus be

described as outlined in Scheme 3.
The observation of separate signals for complex-bound and

free Al-isobutyl groups implies that exchange between these units
is slow on the NMR time scale. Coalescence of these signals did
not occur upon heating such a reaction system before the cation
decomposed at 75 �C, but an EXSY study performed at room
temperature revealed substantial exchange between complex-
bound and free Al-isobutyl groups. At mixing times of 300 ms,
sizable EXSY crosspeaks are observed between the respective
isobutyl signals of the hydride cation and those of {AliBu} units
in solution, but not between the hydride signals of these species
(see the Supporting Information). This indicates that a rather fast
exchange occurs primarily between the peripheral isobutyl resi-
dues of the cation [(SBI)Zr(μ-H)3(Al

iBu2)2]
þ and those of free

HAliBu2, while the {Zr(μ-H)3Al2} core of the zirconocene hy-
dride cation remains inert on this time scale.
Yellow, thermally unstable crystals of [(SBI)Zr(μ-H)3(Al

iBu2)2]
þ

[B(C6F5)4]
- were obtained from toluene at -40 �C. An X-ray

crystallographic determination, conducted at -100 �C (see the
Supporting Information), revealed a structure in the noncentro-
symmetric space group P212121, with two [(SBI)Zr(μ-H)3-
(AliBu2)2]

þ cations of opposite chirality and two [B(C6F5)4]
-

anions per asymmetric unit along with a molecule of toluene.
Structural refinement resulted in closely similar geometries for
both of the cations, one of which is shown in Figure 3.
While the quality of the structure suffers from considerable

disorder with regard to the orientation of the Al-bound isobutyl
groups, the geometry of the {Zr(μ-H)3Al2} core, with hydride
positions located in the difference Fourier map, clearly supports
the structural assignments derived from the NMR data discussed
above. The coordination of three adjacent hydride ligands to the
metal center of this cation represents a structural motif, which is
found in numerous neutral and cationic, mononuclear, and dinu-
clear zirconocene hydride complexes,12 as well as in neutral, di-,
and multinuclear hydrides of the lanthanide metals.13 None of
these classes provides any precedent, however, for the particular
structure represented in Figure 3.
2. Alkylaluminum-Complexed Hydride Cations Derived

fromOtherMetalloceneComplexes. In addition to (SBI)ZrCl2,
we have studied several other zirconocene dichlorides (Scheme 4)
with regard to their reactions with excess HAliBu2 and 1 equiv of
[Ph3C][B(C6F5)4]. As with (SBI)ZrCl2, we observe in each case
mutually coupled doublet and triplet high-field signals with

intensities of 2Hand1Hper zirconoceneunit, respectively (Table 1). In
some cases, the signals of complex-bound isobutyl CH, CH2, and/
or CH3 groups are sufficiently apart from their uncomplexed
counterparts to allow their separate integration, which supports
the presence of two AliBu2 moieties per zirconocene unit. There is
no reasonable doubt, therefore, that each of the zirconocene dichlo-
rides shown in Scheme 4 forms a cationic hydride complex contain-
ing two AliBu2 units, in complete analogy to [(SBI)Zr(μ-H)3-
(AliBu2)2]

þ.
While all the zirconocene complexes studied here, ring-bridged

and unbridged alike, uniformly give the previously unreported
type of alkylaluminum-complexed zirconocene hydride cation
described above, the relative positions of the two Zr-hydride
signals differ among the hydride cations listed in Table 1. For all
of the complexes with a single-atom bridge, the doublet of the
lateral Zr-H2 group appears at higher fields than the central
Zr-H triplet, whereas all of the hydride cations without interannular

Figure 3. Structure of one of the two unique [(SBI)Zr(μ-H)3(Al
iBu2)2]

þ

cations in the asymmetric unit of crystals of [(SBI)Zr(μ-H)3(Al
iBu2)2]

[B(C6F5)4] 3
1/2toluene (thermal ellipsoids at 50% probability, hydride

positions taken from the difference Fourier map; other H atoms omitted).

Scheme 3

Scheme 4
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bridge give rise to a Zr-H2 doublet at lower field than their
Zr-H triplet.14 This observation sets the unbridged hydride
cations apart from their neutral trihydride precursors, for all of
which the Zr-H2 doublet had been found at higher fields than
the Zr-H triplet.4 This signal crossover upon conversion of each
of the unbridged neutral trihydride precursors to its cationic
counterpart appears to be connected with the net loss of the
centrally positioned [Cl2Al

iBu2]
- unit in the course of this

reaction (Scheme 5).
Attempts to isolate the ion pairs described above yielded in

general only oily materials. For the [B(C6F5)4]
- salt of the

doublyCp-bridged cation [(Me2Si)2(C5H3)2Zr(μ-H)3(Al
iBu2)2]

þ,
however, a few colorless crystals were obtained from benzene-d6

solution. A crystallographic determination yielded the structure
shown in Figure 4. Once again, the positions of the hydrides were
obtained from the difference map and are entirely in accord with
the NMR assignments given above. This structure is of better qual-
ity than that of [(SBI)Zr(μ-H)3(Al

iBu2)2]
þ shown in Figure 3.

The heavy-atom geometry of its {Zr(μ-H)3(Al
iBu2)2} core is

closely similar to that of [(SBI)Zr(μ-H)3(Al
iBu2)2]

þ, thus attest-
ing to the unexpectedly pervasive tendency of zirconocene-based
reaction systems to form alkylaluminum-complexed hydride cat-
ions of this kind.
Attempts to make the corresponding titanocene derivative

failed; addition of HAliBu2 to Cp2TiCl2 resulted in H2 evolution
and formation of a lavender solution, which does not exhibit any

Table 1. 1HNMRData of {iBu2Al}-Complexed Zirconocene 'Hydride Cations ([(F5C6)4B]
- Salts in Benzene-d6 Solution, 25 �C,

δ in ppm, 300 MHz)

complexa ZrH3 Al-CH2CH(CH3)2 ligandb

rac-Me2Si(indenyl)2Zr = (SBI)Zr24 -2.25 (d, 2H, 8 Hz) 0.26 (dd, 4H, 14, 7 Hz)c 5.57 (d, 2H, 3 Hz)

0.34 (t, 1H, 8 Hz) 0.15 (dd, 4H, 14, 7 Hz)c 6.41 (d, 2H, 3 Hz)

0.94 (t, 24H, 7 Hz)d 0.65 (s, (CH3)2Si)

1.77(n, 4H, 7 Hz)

rac-C2H4(indenyl)2Zr
25 -1.72 (d, 2H, 8 Hz) 0.19 (dd, 7, 3 Hz)e 5.56 (d, 2H, 3 Hz)

-0.29 (t, 1H, 8 Hz) 0.93d,e 5.74 (d, 2H, 3 Hz)

1.74 (n, 4H, 7 Hz)

rac-C2H4(4,5,6,7-tetrahydroindenyl)2Zr
25 -1.08 (t, 1H, 7 Hz) 0.35 (m)e 5.26 (d, 2H, 3 Hz)

-0.46 (d, 2H, 6 Hz) 0.96 (dt, 9, 5 Hz)e 5.81 (d, 2H, 3 Hz)

1.88 (n, 7 Hz)e

rac-Me2C(indenyl)2Zr
26 -1.72 (d, 2H, 7 Hz) 0.25 (qd, 8H, 15, 7, 7 Hz) 5.33 (t, 2H, 3 Hz)

-0.82f 0.91 (dd, 24H, 6, 4 Hz) 6.49 (d, 2H, 3 Hz)

1.76 (m, 4H) 1.69 (s, (CH3)2C)

Me4C2(C5H4)2Zr
27 -1.60 (t, 1H, 7 Hz) 0.36 (d, 8H 7 Hz) 5.73 (pt, 4H, 3 Hz)

-1.37 (d, 2H, 7 Hz) 0.95 (d, 24H, 7 Hz) 5.95 (pt, 4H, 3 Hz)

1.86 (m, 4H, 7 Hz) 0.88 (s, (CH3)4C2)

Me2Si(C5H4)2Zr
28 -2.04 (d, 2H, 9 Hz) 0.34 (d, 7 Hz) 5.24 (br, 4H)

-1.27 (t, 1H, 8 Hz) 0.86 (m) 6.22 (br, 4H)

1.82 (m) 0.17 (s, (CH3)2Si)

(Me2Si)2(C5H3)2Zr
29 -2.03 (d, 2H, 8 Hz) 0.34 (dd, 8H, 28, 7 Hz) 5.94 (t, 2H, 2.7 Hz)

-1.04 (t/s, 1H, 8 Hz) 0.92 (m, 36H) 6.49 (d, 4H, 2.7 Hz)

1.82 (m, 4H) -0.08 (s, (CH3)2Si)

(C5H5)2Zr
30 -2.39 (t, 1H, 8 Hz) 0.28 (d, 8H, 7 Hz) 5.59 (s, 10H)

-2.27 (d, 2H, 8 Hz) 0.92 (d, 24H, 7 Hz)

1.81 (n, 4H, 7 Hz)

(nBuC5H4)2Zr
30 -1.97 (t, 1H, 8 Hz) 0.40 (d, 7 Hz) e 5.67 (d, 4H, 2 Hz)

-1.61 (d, 2H, 8 Hz) 0.96 (d, 7 Hz)e 5.73 (d, 4H, 3 Hz)

1.87 (m)e

(Me3SiC5H4)2Zr
31 -2.30 (br, 1H) 0.46e 6.01 (br, 4H)

-1.84 (d, 2H, 9 Hz) 0.95 (d, 6 Hz)e 6.11 (br, 4H)

1.86 (m, 4H)

(1,2-Me2C5H3)2Zr
32 -1.79 (br, 1H) 0.43 (d, 7 Hz)e 5.29 (d, 4H, 3 Hz)

-1.42 (d, 7 Hz, 2H) 0.97 (d, 6 Hz)e 5.86 (t, 2H, 3 Hz)

1.88 (m, 7 Hz)e 1.74 (s, 4Cp-Me)

(C5H5)2Hf
30 -2.27 (t, 6 Hz, 1H) 0.26 (d, 12H, 7 Hz) 5.48 (s, 10H)

-1.40 (d, 6 Hz, 2H) 0.92 (d, 7 Hz)e

1.80 (m, 4H, 7 Hz)
aWith references to the preparation of the respective zirconocene dichloride startingmaterial. bC5-H unless otherwise noted. cResolved diastereotopic
splitting by 0.11 ppm. dDiasterotopic splitting not resolved. eNot sufficiently resolved for integration. f Peak obscured by other signals, chemical shift
determined from gCOSY.
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C5H resonances, thus indicating the presence of a Ti(III) species.
Reaction of Cp2HfCl2 with HAliBu2 and [Ph3C][B(C6F5)4],
however, gave the cation [Cp2Hf(μ-H)3(Al

iBu2)2]
þ, as shown

by an 1HNMR spectrum closely resembling that of its unbridged
zirconocene hydride congeners (see Table 1). For the product
of a reaction of (SBI)HfCl2 with Al

iBu3 and [Ph3C][B(C6F5)4],
NMR spectral features have been described,9d which resemble
those described above for its Zr analogue; the product of
this reaction might thus also be a cation of the type described
here.
3. Interconversion Reactions of [(SBI)Zr(μ-H)3(Al

iBu2)2]
þ

with Other Cationic Complexes. The cationic complex [(SBI)-
Zr(μ-H)3(Al

iBu2)2]
þ described above appears to reversibly inter-

convert with other zirconocene cations, some of which have been
observed in zirconocene-based precatalyst systems. A first case in
point concerns the blue-green coloration observed when [(SBI)-
Zr(μ-H)3(Al

iBu2)2]
þ is formed according to Scheme 3. That this

coloration might be due to some side or sequential reaction
product, rather than to the hydride cation itself, is suggested by
the observation that the intensity of this coloration depends on the
reaction conditions.
When [(SBI)Zr(μ-H)3(Al

iBu2)2]
þ is prepared, as described

above in the presence of 5 equiv of HAliBu2, the reaction mixture
gives rise to an absorption band at 614 nm. Absorbance at this
wavelength increases, when only a stoichiometric 4 equiv of
HAliBu2 is used and even more so by use of substoichiometric
amounts of HAliBu2 (Figure 5). In the presence of 10 equiv of
HAliBu2, on the other hand, any absorption at 614 nm isminimal.
When ClAliBu2 is added to such a solution, absorption at 614 nm
is retained even in the presence of 10 equiv of HAliBu2.
Upon addition of ClAliBu2 to a solution of [(SBI)Zr(μ-H)3-

(AliBu2)2]
þ, we observe a new set of signals by 1H NMR. These

signals are particularly clear-cut when only 1 equiv of HAliBu2
and 2 equiv ClAliBu2 are used in the generation of the cation. In
these spectra, signals due to complex-bound {Al-iBu} groups, at
1.88 and at 0.27 ppm, are cleanly separated from signals due to
other {AliBu} species in solution. Comparison of their integrals
with those of the zirconocene ligand signals at 6.26 and 5.18 ppm
(d, J = 3Hz,C5H) clearly indicates the presence of only one {Al

iBu2}
group per zirconocene unit (see the Supporting Information).
This stoichiometry and the reversible appearance and disappear-
ance of these signals upon addition of ClAliBu2 or HAl

iBu2, re-
spectively, led us to attribute this set of signals to a ClAliBu2-
complexed zirconocene chloride cation, [(SBI)Zr(μ-Cl)2Al

iBu2]
þ,

formed from[(SBI)Zr(μ-H)3(Al
iBu2)2]

þ in an equilibriumaccord-
ing to Scheme 6.15 Apparently, two Zr-Cl-Al bridges are suffi-
cient to satisfy the coordination requirements of the Zr center in
such a complex in distinction to Zr-H-Al bridges, three of
which appear to be required to complete the coordination of the
Zr center, most likely due to the more electron-deficient nature
of Zr-H-Al as compared to Zr-Cl-Al bridges.

A related question would concern the degree to which {CH3Al}
instead of {ClAl} species could participate in similar equilibria.
Addition of relatively small amounts of AlMe3 to a solution of the
cation [(SBI)Zr(μ-H)3(Al

iBu2)2]
þ in benzene-d6 causes the

appearance of additional signals in the vicinity of those of
[(SBI)Zr(μ-H)3(Al

iBu2)2]
þ. When only 1/3 equiv of AlMe3

per Zr is added (i.e., [AlMe]/[Zr] = 1), we observe next to the
doublet at-2.25 ppm a pair of doublets centered at-2.05 ppm
(Figure 6B). This signal can be assigned to a cation similar to
[(SBI)Zr(μ-H)3(Al

iBu2)2]
þ, in which one of the Al-bound

isobutyl groups is replaced by a methyl group (Scheme 7),16

such that the complex’s lateral hydride positions are rendered
inequivalent.17

Addition of AlMe3 at somewhat higher [AlMe3]/[Zr] ratios
causes a coalescence of these signals, first to two broad features

Figure 4. Structure of the cation [(Me2Si)2(C5H3)2Zr(μ-H)3(Al
iBu2)2]

þ

in crystals of its [B(C6F5)4]
- salt (thermal ellipsoids drawn at 50% pro-

bability, hydride positions taken from the difference Fourier map; other
H atoms omitted).

Figure 5. UV/vis absorption spectra of toluene solutions containing
0.56 mM (SBI)ZrCl2 in the presence of 3, 4, 5, or 10 equiv of HAl

iBu2,
after addition of 1 equiv of [Ph3C][B(C6F5)4] (path length 1 cm;
*artifact due to change of gratings).

Scheme 6

Scheme 5
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centered at-1.95 ppm and then to one very broad signal (ν1/2 =
29 Hz), likewise centered at-1.95 ppm (Figure 6C-E) . These
observations are undoubtedly due to the formation of increasing
fractions of related cations, in which isobutyl residues at both Al
centers are exchanged by Me groups (Scheme 7). The broad-
ening of the Zr-hydride signals of these mixed-alkyl aluminum
species, henceforth referred to as [(SBI)Zr(μ-H)3(AlR2)2]

þ, is
probably due to the statistical nature of this exchange.16

Apurely{AlMe2}-complexedcation, [(SBI)Zr(μ-H)3(AlMe2)2]
þ,

is accessible by reaction of (SBI)ZrCl2 with 1 equiv of [Ph3C]-
[B(C6F5)4] in the presence of excess HAlMe2. Its hydride signals
(-0.17 and -2.10 ppm) are found close to those seen in
Figure 5E and are sharper than these, in accord with the assign-
ment of the latter to Me-rich mixed-alkyl aluminum complexed
cations [(SBI)Zr(μ-H)3(AlR2)2]

þ. 1H NMR data for this and
several other {Me2Al}-complexed zirconocene hydride cations
(Table 2) reveal shifts of the respective hydride signals, which
greatly vary without apparent rationale when compared to those
of the respective {iBu2Al}-complexed cations. Sensitivity of the
Zr-H signals to the nature of the Al-bound R groups in cations
of the type [(SBI)Zr(μ-H)3(AlR2)2]

þ is apparent also from the
observation that addition of an aluminum alkyl with longer alkyl

chains, such as trioctylaluminum, causes a strong broadening of
the hydride signal and its shift, in this case to higher fields (-2.4
ppm).18 (SBI)ZrCl2-based precatalysts activated by excess methyl-
alumoxane (MAO), to whichHAliBu2 has been added, have been
reported to give rise to a set of signals, including a broad Zr-H2

resonance at ca. -2 ppm, which were assigned at that time to
species of the generic type (SBI)ZrH2 3 2AlR2X.

9c These signals
are now seen to be identical to those assigned above to mostly
dimethylaluminum-complexed hydride cations [(SBI)Zr(μ-H)3-
(AlR2)2]

þ (cf., Figure 6E).19 We can thus conclude that the
zirconocene hydride species produced in MAO-activated reaction

Figure 6. 1H NMR spectra of a 3 mM solution of [(SBI)Zr(μ-H)3(Al
iBu2)2]

þ in benzene-d6, obtained by reaction of (SBI)ZrCl2 with 5 equiv of
HAliBu2 and 1 equiv of [Ph3C][B(C6F5)4], before (A) and after addition of 1/3 (B), 1 (C), 2 (D), or 3 (E) equiv of AlMe3 relative to Zr.

Table 2. 1H NMR Data of {Me2Al}-Complexed Zirconocene
Hydride Cations ([(F5C6)4B]

- Salts in Benzene-d6 Solution,
25 �C, δ in ppm, 300 MHz)a

complex ZrH3 ligandb

rac-Me2Si(indenyl)2
Zr = (SBI)Zr

-2.06 (d, 2H, 4 Hz) 5.40 (d, 2H, 2.7 Hz)

-0.17 (br, 1H) 6.29 (d, 2H, 2 Hz)

0.62 (s, (CH3)2Si)

rac-C2H4(indenyl)2Zr -1.45 (d, 2H, 9 Hz) 5.49 (d, 2H, 3 Hz)

-1.00 (br, 1H) 5.60 (d, 2H, 2 Hz)

rac-C2H4(4,5,6,7-

tetrahydroindenyl)2Zr

-0.94 (br, 2H)c 5.70 (d, 2H, 3 Hz)

5.15 (d, 2H, 3 Hz)

Me2Si(C5H4)2Zr -2.93 (d, 2H, 7 Hz) 5.13 (pt, 4H, 2 Hz)

-1.61 (t, 1H, 10 Hz) 5.91 (pt, 4H, 2 Hz)

0.21 (s, (CH3)2Si)
a Signals of complex-bound {Al(CH3)2} groups not resolved from those
of free HAl(CH3)2.

bC5-H unless otherwise noted. cCentral hydride
resonance not resolved, probably due to overlap with Al(CH3)2 signals.

Scheme 7
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systems upon addition of HAliBu2 are likewise cations of the type
[(SBI)Zr(μ-H)3(AlR2)2]

þ20

Upon addition of AlMe3 in yet higher concentrations to solu-
tions containing cations of the type [(SBI)Zr(μ-H)3(AlR2)2]

þ

we observe, in addition to the signals due to these cations, an-
other set of signals comprising characteristic Zr(μ-Me)2Al and
AlMe2 signals at -1.43 and -0.71 ppm (Figure 7), which indi-
cate formation of cations of the type [(SBI)Zr(μ-Me)2AlR2]

þ.21

These cations thus appear to arise from the alkylaluminum-
complexed zirconocene hydride cations, [(SBI)Zr(μ-H)3-
(AlR2)2]

þ, by an equilibrium reaction of the type represented
in Scheme 8.19

On the basis of the 1H NMR spectra of reaction systems
containing HAliBu2 in an initial ratio of [HAliBu2]/[Zr]tot =
7.5 and AlMe3 at ratios of AlMe3 to Zr of 70 to 110:1, we estimate
an equilibrium constant on the order of 10-2 for the reaction
shown in Scheme 8 (see the Supporting Information).22 In solu-
tions containing HAliBu2 and AlMe3 in comparable concentra-
tions, the hydride cation [(SBI)Zr(μ-H)3(Al

iBu2)2]
þ would thus

be by far the dominant species.

’CONCLUSIONS

The studies described above have brought to light a hitherto
unreported family of zirconocene hydride cations stabilized by
adduct formation with two HAlR2 units, so as to attain the ZrH3

coordination geometry observed before for related neutral

zirconocene hydride species. These cationic hydride complexes
are subject to ligand exchange equilibria in the presence of chloro-
aluminum or methylaluminum compounds. In the first instance,
the {Zr(μ-H)3(AlR2)2}

þ arrangement is replaced by the previously
unreported doubly Cl-bridged entity {Zr(μ-Cl)2AlR2}

þ, while
exposure to excess MeAlR2 gives rise to species containing a
{Zr(μ-Me)2AlR2}

þ geometry, which have previously been ob-
served in zirconocene-based olefin-polymerization catalysts.21

In equilibria of this kind, hydride-bridged cations are strongly
preferred over dimethyl-bridged zirconocene cations. This indi-
cates that the former are likely to arise in typical MAO-activated
zirconocene-based olefin-polymerization catalysts, whenever these
acquire any hydride units.
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